Telegram Group & Telegram Channel
👌 Когда метод опорных векторов (SVM) может превосходить глубокую нейросеть на практике

SVM может показывать лучшие результаты, когда объём данных небольшой, но признаковое пространство — высокоразмерное и хорошо различающее. Особенно это актуально в узкоспециализированных задачах, где трудно собрать большие размеченные выборки (например, в медицине или биоинформатике).

Если удаётся подобрать подходящую ядровую функцию, SVM может эффективно аппроксимировать сложные границы между классами без необходимости обучения миллионов параметров, как в нейросетях.

⚠️ На что стоит обратить внимание:
— Глубокие нейросети склонны к переобучению на малых данных. Без правильной настройки регуляризации и архитектуры они могут хуже обобщать, чем более простые модели.
— Нейросетям часто нужны хорошие инициализации весов, продвинутые оптимизаторы и большие вычислительные ресурсы. При неправильной конфигурации они могут проигрывать по скорости и стабильности SVM.
— SVM проще интерпретировать и отлаживать в задачах с ограниченными ресурсами или когда важна воспроизводимость.

📌 Вывод:
Если данных мало, но признаки хорошо различают классы — не стоит сразу переходить к нейросетям. Грамотно настроенный SVM может быть не только быстрее, но и точнее.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/989
Create:
Last Update:

👌 Когда метод опорных векторов (SVM) может превосходить глубокую нейросеть на практике

SVM может показывать лучшие результаты, когда объём данных небольшой, но признаковое пространство — высокоразмерное и хорошо различающее. Особенно это актуально в узкоспециализированных задачах, где трудно собрать большие размеченные выборки (например, в медицине или биоинформатике).

Если удаётся подобрать подходящую ядровую функцию, SVM может эффективно аппроксимировать сложные границы между классами без необходимости обучения миллионов параметров, как в нейросетях.

⚠️ На что стоит обратить внимание:
— Глубокие нейросети склонны к переобучению на малых данных. Без правильной настройки регуляризации и архитектуры они могут хуже обобщать, чем более простые модели.
— Нейросетям часто нужны хорошие инициализации весов, продвинутые оптимизаторы и большие вычислительные ресурсы. При неправильной конфигурации они могут проигрывать по скорости и стабильности SVM.
— SVM проще интерпретировать и отлаживать в задачах с ограниченными ресурсами или когда важна воспроизводимость.

📌 Вывод:
Если данных мало, но признаки хорошо различают классы — не стоит сразу переходить к нейросетям. Грамотно настроенный SVM может быть не только быстрее, но и точнее.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/989

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

Библиотека собеса по Data Science | вопросы с собеседований from ca


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA